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Noetherian Ring

Definition. A commutative ring R is called Noetherian if each ideal in R is finitely generated.

Hilbert Basis Theorem. If R is a Noetherian ring, then so is R/X].

Monomials

Definition.

A total order > on the monomials of R = k[x,...,z,] is called a term order if

(a) 2# > 1, for every monomial 2 # 1 and

(b) If 24 > 2B, then for every monomial ¢, z4+¢ > 2B+C

There is only one term order on k|z]:
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Definition. Let f=>"_a,z“ be a nonzero polynomial in k[xy,...,z,] and let > be a monomial
order.

(i) The multidegree of f is multideg(f) = max(a€Z%; : aq # 0) (the maximum is taken with
respect to >).

(ii) The leading coefficient of f is LC(f )=amumdeg_( nE k.

(iii) The leading monomial of f is LM(f) = z™“#4<9(f) (with coefficient 1).

(iv) The leading term of f is LT(f) = LC(f) - LM(f).

(V) LCNI(;UCE’ :Eﬁ) _ a:_;nair(alaﬁl)x;naﬁ(aﬂsﬁQ)x;RGQJ(CE:g,ﬂg) xﬂmam(aﬂ,ﬁn)

Definition. An ideal IC k[zi,...,.x,| is said to be monomial ideal if there is a subset AC
2o (possibly infinite) such that I consists of all polynomials which are finite sums of the form

ZaeAhOﬂx , where ho€ k[z1,:+,z,). In this case, we write I = (% a €A).

Lemma. Let [ = (% a €A) be a monomial ideal. Then a monomial x” lies in I if and only z”
is divisible by z* for some a€ A.

Lemma. Let I be a monomial ideal, and let f€ k[z1,...,z,]. Then the following are equivalent:

i) fe L

ii) Every term of f lies in I.

ili) f is a k-linear combination of the monomials in 1.

Corollary. Two monomial ideals are the same if and only if they contain the same monomials.

Dickson’s Lemma. Let [ = (z*: o € A) C k[z1,--,x,] be a monomial ideal. Then I can be
written in the form [=( 22 ... 7)) where (1), a(s)€A. In particular, I has a finite basis.

?

Definition. Let I C k[zy,...,z,) be an ideal other than {0}.

i) We denote by LT(7) the set of leading terms of elements of I. Thus, LT(I)={cz® : there exists
f€ I with LT(f) = ca“}.

ii) We denote by (LT(7)) the ideal generated by the elements of LT(7).

Proposition. Let /C k[xy,...,x,] be an ideal.
i) (LT(])) is a monomial ideal.
ii) There are gi,...,g: € I such that (LT(/)) = (LT(q1), ..., LT(g)).

Specific Orders ’7

We use spesific orders while calculating Groebner Bases. It helps find the leading terms of
polynomials for S-polynomials. The leading term depends on which specific order we choose.

The lexicographic order.
Let a = (a1,03,....,a,) and B = (B1,62,....0n) € Z%y. We say a >, B if in the vector difference
a—f € Z", the leftmost nonzero entry is positive. We will write % >0p 2”7 if @ >jep 5.

The graded lexicographic order.
Let a = (ai,as,...,on) and 8 = (B1,02,-...0n) € ZZy. Wesay @ >gprex Bif || =) ;06 > | B]
=Y o fior|a|=|pB|and a >, 8. We will write 2% > grjep 2 if o =l (O

The graded reverse lexicographic order.
Let o = (ay,09,...,00) and B = (B1,8s,...,08n) € Z5y. We say & >grepieq B if

la|=> 0> |0 |=>08ior|a|=]|p|and the rightmost nonzero entry of a—p3 € Z"
is negative. We will write 2% > g epiea 8 if o >orevier -

f

e Example /—7

1. Compare the vectors ap= (2,1), a;=(1,2), as=(1,0) and a3z=(0,3) in lexicographic order,

graded lexicographic order and graded reverse lexicographic order.

First start by comparing vector ag with other vectors: ag >ep 1 since ag—ay= (1,—1), g >lex
ag since ag—ao=(1,1), ag >iep 3 since ap—az= (2,—2). If we compare vector a; with other
vectors, we get the following results: ay >0 o since aj—ao= (0,2), a3 > 3 since o —ag=
(1,—1). We continue with the vector as: ap > a3 since ap—az= (1,—3).

Thus, we obtain the result ag >jez 1 >er @9 >ier Q3.

If we compare the vectors in graded lexicographic order, firstly we need to find | ag |, | @1 |, | a2 |,
| a3 |. If we calculate | «; |, we will reach these results: |ag | =3, |y |=3, |a|=1,| a3 | =
3. From here, it is observed that o > grier @2, Q1 > griea @2, A3 >gries 2. Since both | ag |, | a1 |
and | ag | are equal to 3, we need to examine their lexicographic order. If we use the result above,
we obtain ag > grlex X1 > grlex X3 > grlex (2.

If we compare the vectors in graded reverse lexicographic order, firstly we need to find | ap |

| g |, | a2 |, | as |. If we utilize the above result, we get g >grevier @2, Q1 >grevier X2, O3
> revler @2. | ap |=| o | and ag—ay = (1,—1) since the rightmost non-zero entry of ag—a; € Z"
is negative, it implies that ag >grevier @1. | @0 |=| a3 | and ap-az = (2,—2) since the rightmost
non-zero entry of ag—asz € Z" is negative, it implies that ag > grevier @3. | 1 |=| a3 | and oy —as
= (1,—1) since the rightmost non-zero entry of a;—a3 € Z" is negative, it implies that a; > greptes
ag. If we examine all these orderings, the result can be expressed graded reverse lexicographically

|

as follows: 7)) >grev£e:ﬂ 03] >grevle&c 3 >grevle:c 9.

Example

2. In lexicographic order, graded lexicographic order and graded reverse lexicographic order,
consider the polynomial f = 2%y + zy? +z+y> and z>v.

[f we use the results from the above question, we obtain the following orderings:
TP ety B e

1172y>grle:r$y2>grle:syg>gr£e$$-

332y>grevlex$y2>grevle$y3>greviex$-

J

S-Polynomials

Let f, g be monomials then

LCM(LM(f), LM(g)) 3 LCM(LM(f),LM(g))

LT(g) 4

S(f,g) = I7(f)

L
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(Groebner Bases

Definition. Fix a monomial order. A finite subset G={gi,...,g:} of an ideal I is said to be a
Groebner basis (or standard basis) if

Equivalently, but more informally, a set {g1,..., ¢:} C [ is a Groebner basis of I if and only if the
leading term of any element of [ is divisible by one of the LT(g;)

Corollary. Fix a monomial order. Then every ideal IC k[zy,...,z,] other than {0} has a Groebner
basis. Furthermore, any Groebner basis for an ideal [ is a basis of L.

Proposition. Let G={gi,...,g:} be a Groebner basis for an ideal IC k[zy,...,z,] and let f€
k[xy,...,zp] Then there is a unique r€ klzy,...,x,] with the following two properties:

i) No term of r is divisible by any of LT(g1),...,LT(ge).

ii) There is g€ such that f=g+r.

In particular, 7 is the remainder on division of f by G no matter how the elements of G are listed
when using the division algorithm.

Corollary. Let G={g;,...,g:} be a Groebner basis for an ideal I C k[xy,...,x,] and let f € k[z1,...,2y).
Then fe I if and only if the remainder on division of f by G is zero.

Definition. We will write TF for the remainder on division of f by the ordered s-tuple F=(fi,...,fs).
If F' is a Groebner basis for ( fi,...,fs) then we can regard F' as a set (without any particular order)
by i) No term of r is divisible by any of LT(g;),...,L.T(¢¢) and ii) There is g€l such that f=g+r.

For instance, with F' = (z+1°2, 2%y 2%)C k[z,7,2] , using the lexicographic order, we have
P =y

since the division algorithm yields o3 = 2?(z+y32)- yz(2?y®+2%)+y 2>,

Buchberger’s Criterion

Let I C K[Xy, . . .
basis for I if and only if for all pairs ¢g; and g; for ¢ # j the remainder of the division of S(g;,g;)

, X¢| be a polynomial ideal with basis G = {g1,....,¢t}. G is a Groebner

by G (listed in some order) equals zero.

Buchberger’s Algorithm

Let I=(fi,...,fs)#{0} be a polynomial ideal. Then a Groebner basis for I can be constructed in a
finite number of steps by the following algorithm:

Input: F=(f1,....fs)
Output: a Groebner basis G=(gy,...,g¢) for I, with FC G

G:=F
REPEAT
G'=G
FOR each pair {p,q}. p# ¢ in G’ DO
5:=5(p.q)
[F S#£0 THEN G:=GU{S}
UNTIL G=CG'

The Ideal Membership Problem

If we combine Groebner bases with the division algorithm, we get the following ideal membership
algorithm: given an ideal I =(f;,..., fs), we can decide whether a given polynomial f lies in
as follows. First, using an a,lgorlthm similar to Buchberger’s Algorithm, find a Groebner basis
G={g1,....,q¢:} for I. Then we get fe I if and only if TGzO.

Example. Let I=(f1,fo)=(zy*+x2%y2?)eC|r,y,2] and use the grlex order. Let
f=zyP 2+ 22+ 2%y’ +x23. We want to know if fel.
The generating set given is not a Groebner basis of I because LT(7) also contains polynomials such
as LT(S(f1,f2))=LT(z2%)=xz2° that are not in the ideal (LT(f1),LT(f2))=(z?*y?y2?). Therefore,
When we start computing a Groebner basis for I, we obtain the following result:

G={f1,fo, 3}={y7?, z2°, 2*y°+x2°}.
We may now test polynolmalb for membership in I. For example, dividing f above by G, we find
=12 fi+13 fo+ f3. Since the remainder is zero, we have fe I
For another example, consider f=z?4yz+1. Even without completely computing the remainder
on division by G, we can see from the form of the elements in G that f gé[ The reason is that
LT(f)= 2?2 is clearly not in the ideal (LT(G))=(y22, z2°x?y?). Hence, f #£0, so that f¢ I

This last observation illustrates the way the properties of an ideal are revealed by the form of the
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elements of a Groebner basis.

The Problem of Solving Polynomial Equations

We will explore the application of the Groebner basis technique in solving systems of polynomial
equations involving several variables.

Example. Consider the equations

z2 412+ 22=1,

2=y,

z=y in C3.
These equations define the ideal I=(z’4y*+2°—1,2°—y2—y) CC[z,y,2] and our goal is to
determine all points in V(). We can calculate V(I) using any basis of I So let us see what
happens when we use a Groebner Basis. We will compute a Groebner basis on I with respect to
the grlex order. The basis is G={g1,90,93}={ 22*+22—1, y—22 x—2%}. First, the polynomial

,2,—1. Next, when these value of z is

olutlonf; of the orlgmal equa,tlons

g1 depends only on z hence, we get the result z = 7%,

&IL&IH

substituted into the equations go=0 ,g3=0, we get (l %
(=1, =1, 7). Since V(I) = V(g1,92,93), we have found all s

 —

Example

Consider the ring k[z,y,z] with grlex order and I={(f1, fo)=(zz—y* 2*—2?). To determine whether
I is a Groebner basis, we check S(f1,f2).

To determine whether [ is a Groebner basis, we check S( f1,f2).

3 3 . . ~7 r I\
S(fuf)= -4 e = — P42, =(f1,f2) is not a Groebner basis because S(fi, f2)
=—xy?+23.
In order to obtain a Groebner basis, we should include that remainder in our generating set. As a

—F
result, F' became ( f1,fs,f3) and since S( f1,f2)=f3, S(f1, f2) =0.
Thus, if S(f1,f3) and S(fa,f3) are equal to zero, F' will indeed form a Groebner basis. Accordingly,

let us compute S(f1,f3) now.

S(fljfg)zx?:zfl—%fg = —zy*+2%, So, it follows that sz —zy*+2z* . We must add
fa=—xzy*+2* to our generating set. If we let F'=(f1,fs,f3,f4) then we have S(fl, f3) =

For all 1<z’, j<4 mF should be equal to zero. Let us verify these.

S(f2,f3)== f2— f3_ z23—y?2%= y? fo+x f3, hence S(fz:fB)F=0o

"
5(f2-,f4)=—$rf2—_$y fa= 2 —y*2?= y fo-a? fu. So S(f2, fa) =0.
S(f11f4):$y4zf1— o fi =—1°4+2°=f5. We must add fs=—y°®+2° to our generatmg set. If we let

T2 —xf
F=(f1,fs,f3,f1,fs) then we have So S(f1, fi1) f4) =0. For all 1<i,j<5, S(f;, f;) fj) should be equal to
zero. Let us verify these.

230 . g3y . ——F
S(fo fs)=5F fo—Zls f5 = 2°2°—y°2%= 2 f5+2° fo. So S(fs, f5) =0.
E—
S(f3,f4 —xgggfz Tyifél = z2'—y’2*= 2°f1. So S(fs, fa) =0.

F

(f3,f4)=
——F

S(f3,fs)= Tx%gfg Jigf5 = 222°—y* 2= -2’ fs—y*f3. So S(fs, f5) =0.

TY 2 zY'z e
S(f1.f5)= g‘;z fa— y e s = —yP+a2°= 2 it fs. So S(f4, ) =0.

—F

S(faf )z—%ﬁl—iﬁﬁ% = 12°—y’2*= 2 fs—y*fs. So S(fa, f5) =0.
S(f, ( ) =0 for all 1<4,7<5, by Buchberger s Criterion it follows that a grlex Groebner basis I
18 glVGIl by {f11f23f3:f4:f5} — {fL’Z y ,.7; : ’y2+Z , xy4+z ) 6+Z5}-

Minimal Groebner Bases

A minimal Groebner basis for a polynomial ideal I is a Groebner basis G for [ such that:
i) LC(p)=1 for all peG,
ii) For all peG, LT(p)¢(LT(G-{p})).

/,’ Reduced Groebner Bases

A reduced Groebner basis for a polynomial ideal [ is a Groebner basis G for I such that:
i) LC(p)=1 for all pe G,
ii) For all p€ G, no monomial of p lies in (LT(G-{p})).

Groebner Bases in Cryptography

Groebner bases have applications in cryptography, particularly in the field of algebraic cryptanaly-
sis. One notable example is in the analysis of algebraic equations arising from certain cryptosystems.
Consider a cryptographic system based on polynomial equations, such as a multivariate polynomial
public-key cryptosystem.
For instance, consider a multivariate polynomial system used in a cryptosystem:

filzy,@2,+,2n)= 0

fg(xl, xg,-‘-,xn): 0

fm(ﬂcla 1 R mn): 0

The provided equations likely characterize a process related to either encrypting information
or generating cryptographic keys. In this system, i, ..., &, represent the information we aim
to retain, and we safeguard this information through the equation system f;. The easier it is
to solve for z;’s from the equation system, the more susceptible our information becomes to
compromise, which is an undesirable outcome. Our desired scenario involves the equations being
difficult to solve, ensuring the security of our private keys. In the encryption process, it is essential
for the encryption stage to be efficient to ensure a fast algorithm. To achieve this, we utilize
Groebner bases, as it expedites intermediate calculations in the process. Groebner bases serve
as a mathematical tool to streamline and simplify the system of equations, thereby facilitating a
clearer comprehension of their algebraic structure.

Groebner Bases in Coding Theory

Groebner bases have applications in Coding Theory, particularly in the study of error-correcting
codes. One example is the use of Groebner bases to analyze and construct algebraic geometric
codes.
Algebraic geometric codes are a class of error-correcting codes derived from algebraic varieties.
Groebner bases play a crucial role in finding suitable generators for these codes.
Consider an example where you want to construct an algebraic geometric code for a specific alge-
braic variety defined by polynomial equations. The Groebner basis of these polynomials can be
computed to obtain a set of polynomials that generate the same ideal. These polynomials can then
be used as the basis for an algebraic geometric code.
For instance, suppose you have an algebraic variety defined by the polynomials:

fi(z,y,2) = 22 +y2+22—-1

fo(z,y,2) = z+y+2—2
The Groebner basis with respect to a certain monomial ordering might be:

q1(z,9,2)= z+y+2—2

go(z,y,2)= 2%-22+1
These polynomials can be used as generators for an algebraic geometric code associated with the
algebraic variety defined by f; and fy. The advantage of using g; and g» polynomials instead of f;
and fy polynomials lies in the properties and simplifications provided by the Groebner basis. The
Groebner bases, represented by g1 and go, is often more simplified compared to the original set of
polynomials f; and fy. This simplification makes it easier to work with and analyze the algebraic
structure of the code. In coding theory, these algebraic geometric codes have applications in
providing efficient ways to detect and correct errors in data transmission or storage, making them
an essential tool in modern communication systems.

B
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Some Applications of Groebner Bases

Groebner bases, which is crucial in algebraic geometry, have applications in various fields, including
computer-aided design, robotics, and cryptography. Used in Computer Algebra Systems, they
enable symbolic computation. In coding theory, Groebner bases aid in constructing error-correcting
codes. Their role extends to algebraic cryptanalysis, robotics problem-solving, invariant theory in
physics and chemistry, and modeling biochemical reaction networks in biology. The historical
evolution of Grobner bases emphasizes their versatility in various applications across computer
science, cryptography, engineering, and the sciences, highlighting their ongoing significance in
contemporary research and the solution of practical problems. We can examine some applications
of the Groebner bases in more detail in the following part.

()
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